Hom-Tensor Adjunction

Let $L: \mathcal{A} \rightarrow \mathcal{B}$ and $R: \mathcal{B} \rightarrow \mathcal{A}$ be functors. We say that L is left adjoint to R, R is right adjoint to L, or L and R are adjoint if there is a natural isomorphism

$$
\tau: \operatorname{Hom}_{\mathcal{B}}(L(-),-) \rightarrow \operatorname{Hom}_{\mathcal{A}}(-, R(-))
$$

That is, given $\varphi: A \rightarrow A^{\prime}$ in \mathcal{A} and $\psi: B \rightarrow B^{\prime}$ in \mathcal{B}, we have the following commutative diagram:

Exercise 1 Fix rings R and S and fix an $R-S$ bimodule B. Show that the functors $-\otimes_{R} B$ and $\operatorname{Hom}_{S}(B,-)$ are adjoint.

Let A be a right R-module and let C be a right S-module. We need to show that

$$
\operatorname{Hom}_{S}\left(A \otimes_{R} B, C\right) \cong \operatorname{Hom}_{R}\left(A, \operatorname{Hom}_{S}(B, C)\right)
$$

naturally.
Let $f \in \operatorname{Hom}_{S}\left(A \otimes_{R} B, C\right)$; i.e., $f: A \otimes_{R} B \rightarrow C$. Define

$$
\tau: \operatorname{Hom}_{S}\left(A \otimes_{R} B, C\right) \rightarrow \operatorname{Hom}_{R}\left(A, \operatorname{Hom}_{S}(B, C)\right)
$$

by declaring τf to be the map that at $a \in A$ outputs the map $b \mapsto f(a \otimes b) \in C$; i.e.,

$$
(\tau f(a))(b)=f(a \otimes b)
$$

Let $g \in \operatorname{Hom}_{R}\left(A, \operatorname{Hom}_{S}(B, C)\right)$; i.e., $g: A \rightarrow \operatorname{Hom}_{S}(B, C)$. Define

$$
\sigma: \operatorname{Hom}_{R}\left(A, \operatorname{Hom}_{S}(B, C)\right) \rightarrow \operatorname{Hom}_{S}\left(A \otimes_{R} B, C\right)
$$

by declaring σg to be the map that is induced by the bilinear map $A \times B \rightarrow C,(a, b) \mapsto(g(a))(b)$; i.e.,

$$
(\sigma g)(a \otimes b)=(g(a))(b)
$$

We claim that σ and τ are inverses. To see this, observe that

$$
\begin{gathered}
(\sigma \tau f)(a \otimes b)=(\tau f(a))(b)=f(a \otimes b) \\
\text { and } \\
(\tau \sigma g(a))(b)=\sigma g(a \otimes b)=(g(a))(b)
\end{gathered}
$$

and thus σ and τ are inverses, as we claimed.

Next, we claim this isomorphism is natural. We begin by showing the commutivity of the left square. We must show that given an S-module homomorphism $\varphi: A \rightarrow A^{\prime}$ and an R-module homomorphism $\psi: C \rightarrow C^{\prime}$, if $f \in \operatorname{Hom}_{S}\left(A^{\prime} \otimes_{R} B, C\right)$, then

$$
\tau(\varphi \otimes B)^{*}(f)=\varphi^{*} \tau(f)
$$

in $\operatorname{Hom}_{R}\left(A, \operatorname{Hom}_{S}(B, C)\right)$. Observe as

$$
\begin{gathered}
\left(\left(\tau(\varphi \otimes B)^{*} f\right)(a)\right)(b)=\left((\varphi \otimes B)^{*} f\right)(a \otimes b)=(f(\varphi \otimes B))(a \otimes b)=f(\varphi(a) \otimes b) \\
\text { while } \\
\left(\left(\varphi^{*} \tau f\right)(a)\right)(b)=(\tau f(\varphi(a)))(b)=f(\varphi(a) \otimes b)
\end{gathered}
$$

Thus the left square commutes.
To see the commutivity of the right square, we must show that if $f \in \operatorname{Hom}_{S}\left(A \otimes_{R} B, C\right)$, then

$$
\tau \psi_{*}(f)=\left(\psi_{*}\right)_{*} \tau(f)
$$

in $\operatorname{Hom}_{R}\left(A, \operatorname{Hom}_{S}\left(B, C^{\prime}\right)\right)$. Observe as

$$
\left(\tau \psi_{*} f(a)\right)(b)=\psi_{*} f(a \otimes b)=\psi f(a \otimes b)
$$

while

$$
\left(\left(\psi_{*}\right)_{*} \tau f(a)\right)(b)=\left(\psi_{*} \tau f(a)\right)(b)=(\psi \tau f(a))(b)=\psi f(a \otimes b) .
$$

Thus the right square commutes.

